
SYSTEM∗– Ultimate Forensic Querying

Author names deleted for review

Abstract This paper describes a novel, XML-based ap-
proach towards managing and querying forensic traces ex-
tracted from digital evidence. This approach has been im-
plemented in SYSTEM, a prototype system for forensic
analysis. SYSTEM systematically applies forensic anal-
ysis tools to evidence files (e.g., hard disk images). Each
tool produces structured XML annotations that can refer
to regions (byte ranges) in an evidence file. SYSTEM
stores such annotations in an XML database, which al-
lows us toquerythe annotations using a single, powerful
query language (XQuery). SYSTEM provides the foren-
sic investigator with a rich query environment in which
browsing, searching, and pre-defined query templates are
all expressed in terms of XML database queries.

1 Introduction

A typical digital forensic investigation involves these four
phases:

1. media capture (e.g., forensic disk duplication);
2. feature extraction (e.g., parsing file systems, mail-

boxes, chatlogs, etc.);
3. analysis (browsing, querying, correlating);
4. reporting (writing down findings for court).

This paper addresses two key problems that occur in
the feature extraction and analysis phases of a computer
system investigation. First, the amount of data to process
in a typical investigation is huge. Modern computer sys-
tems are routinely equipped with hundreds of gigabytes of
storage and a large investigation will often involve multi-
ple systems, so the amount of data to process can run into
terabytes. The amount of time available for processing
this data is often limited (e.g., because of legal limita-
tions). Also, the probability that a forensic investigator

∗True system name replaced for review.

will miss important traces increases every day, because
there are simply too many objects to keep track of.

Second, the diversity of the data present on a typi-
cal hard disk is overwhelming. A disk image contains
a plethora of programs and file formats. This complicates
processing and analysis and has led to a large number of
special-purpose forensic analysis tools (browser history
analyzers, file carvers, file-system analyzers, etc.) While
it is clear that the output of different tools can and should
be combined in meaningful ways, it is difficult today to
obtain an integrated view on the output of different tools.
And again, it is quite unlikely that a forensic investigator
has both the time and the knowledge to apply all appro-
priate tools to the evidence at hand.

Our approach to solving these problems involves these
key elements:

• a clean separation between feature extraction and
analysis;

• a single, XML-based output format for forensic anal-
ysis tools;

• the use of XML database technology for storing and
querying the XML output of analysis tools.

Feature extraction and analysis are often interleaved and
are sometimes seen as a single step. By separating feature
extraction from analysis, we can, to a large extent, au-
tomate the feature extraction phase. This is essential for
dealing with the ever-increasing amounts of input data.
The use of XML as an intermediate format allows us to
manage the heterogeneity of both the input data and of
forensic feature extraction tools. Different tools with a
similar function can be wrapped so that they produce sim-
ilarly structured (XML) output. That output can then be
processed by a single analysis tool that no longer has to
deal with the idiosyncracies of various input formats. Fi-
nally, by storing the XML annotations in a database sys-
tem, we obtain all the benefits of declarative, general-
purpose query languages.

1

To test this approach, we have implemented a proto-
type system called SYSTEM. SYSTEM automatically ex-
tracts features from disk images and stores those features
in a high-performance XML database system. The XML
databaseand the disk-image data that is referenced by the
XML annotations can be accessed through XQuery [1], an
XML query language. Since we do not expect all foren-
sic analysts to be XQuery experts, we provide, through
a web interface, a number of predefined query templates
and standard analyses (e.g., a timeline).

The remainder of the paper is structured as follows.
Section 2 discusses related work. Section 3 gives an archi-
tectural overview of SYSTEM. Section 4 describes appli-
cation areas in which SYSTEM can be useful. Section 5
gives an overview of our initial experiences with the pro-
totype. Finally, Section 6 presents our conclusions and
our plans for future work on SYSTEM.

2 Related Work

Our work on SYSTEM is related to several other fields
and efforts. First, and perhaps foremost, we are aware
of several ongoing projects in the law enforcement com-
munity that aim to automate feature extraction for large
evidence sets. The need for such automation has been ex-
pressed by various authors [3, 4, 5, 6]. Unfortunately, very
little is published about these projects. One such project
is the Computer Forensic Investigative Toolkit (CFIT) [5],
a system developed by Australia’s Defence and Science
Technology Organization. To the best of our knowledge,
CFIT focusses on automatic feature extraction and data
visualization rather than the querying of extracted fea-
tures.

SYSTEM builds on recent advances in information re-
trieval and on XML-based information retrieval in partic-
ular. XML database systems are relatively new and large
forensic data sets pose significant challenges to them.

Mainstream commercial toolkits such as Encase and
FTK provide a user-friendly interface to a built-in set of
forensic analysis tools. EnCase also provides its own
scripting language, but no API that allows one to plug
in existing, external tools written in a common program-
ming language. SYSTEM differs principally from these
tools by its use of a queryable, intermediate data store that
isolates feature extraction from analysis. As we will argue

���������

�	���
���

���������

���������
�����
�

�

������
�

���

��
���
�

���������

��
���������

� !�
��"����#

��
����$������

���%

��������

�	���
���

����
����
�����

���&��

���&��

���&��

����
����������

�����

Figure 1: SYSTEM Framework Architecture

in this paper, this offers important benefits.

3 SYSTEM

The SYSTEM framework consists of three components
(see Figure 1). Thetool repositoryhouses a collection of
feature-extraction tools. Thefeature extraction manager
orchestrates the invocation of these tools, merges their
XML outputs, and stores the result in thestorage sub-
system. The storage subsystem consists of binary large
objects that hold raw evidence data and an XML database
that holds all extracted features.

3.1 The Feature Extraction Manager

From SYSTEM’s perspective, an investigation starts
when one or more raw digital evidence items, usually disk
images, are fed to the system. Initially nothing is known
about the content of these evidence items. The content is
simply a single piece of binary data that we will refer to
as a Binary Large OBject (BLOB).

The feature extraction manager is responsible for ex-
tracting from the input BLOBs as many useful features
as possible. It does this by running tools from the tool
repository in the correct order and by applying them to the
correct inputs. It also tracks which objects have already
been annotated by other tools and prevents duplicate an-
notations.

It is the tasks of individual tools to extract specific fea-
tures from the BLOBs. A tool will normally operate on
one or more byte ranges in the current BLOB set. Such
a byte range is called aregion. A tool extracts features
from regions and outputs the extracted data in the form

2

of an XML fragment. An XML fragment produced by a
tool may contain references to contiguous byte ranges in
the BLOB. Such a byte range is called aregion. Since a
tool’s XML output refers back to the BLOB, a tool is also
said toannotate(parts of) a BLOB. The combination of
XML and BLOB is in database literature often referred to
as stand-off annotation [7]; the XML describes/annotates
the BLOB.

The feature extraction manager collects the XML frag-
ments produced by tools and integrates those fragments
into a single, large XML document, which is effectively a
tree. It will attach any newly derived annotations to their
parents in the current tree.

Annotations produced by one tool can be used as input
for other tools; this allows the feature extraction manager
to create an increasingly larger set of annotations. This
is illustrated in Figures 2. These figures show a case in
which three evidence files (A, B, and C) are processed.
The initial annotation tree could look like Figure 2. After
the feature extraction manager has run a volume detection
tool and collected that tool’s output, the new annotation
tree could look like the second step. Next, SYSTEM will
run file-system parsers that take the volumes as input. Af-
ter file systems have been recognized SYSTEM will run
more specific tools such as individual document analyz-
ers, registry analysis, unallocated cluster carving, etc.

For robustness, the feature extraction manager runs
each tool in separate processes so that a tool crash will not
result in a framework crash. The output of malperforming
tools is discarded to avoid corrupted data.

3.2 The Tool Repository

The Tool Repositoryis a set of feature extraction tools.
A tool consist of some extraction program and awrap-
per. A program is wrapped by creating atool-executable
wrapperand atool input descriptor. The tool-executable
wrapper describes how to invoke the tool and converts
the tool’s output to XML (see Figure 4). We assume that
many existing forensic programs can be made to produce
XML by wrapping them. While this is generally true for
command-line programs, it is obviously much more diffi-
cult to wrap GUI-based programs.

The tool input descriptor is an XQuery expression that
selects input for the tool. Specifically, the query selects
existing XML fragments from the global, case-wide an-

notation tree. Input descriptors are restricted to selecting
XML nodes that refer to a region in one of the BLOBs.
When invoking a tool, the feature extraction manager ex-
ecutes the input descriptor query and passes both the re-
sulting XML fragment and the associated BLOB data to
the tool. Table 1 lists several example tools. For each tool,
we give its input descriptor query.

Tool name Rifiuti
Description Lists recently deleted files by looking at

the Recycle Bin log files (usually named
”INFO2”).

Input selection Selects all files namedINFO2

Input query //file[@name[ends-with(.,"/INFO2")]]

Tool name Registry Parser
Description Analyzes Windows configuration informa-

tion, e.g. browser settings, installed ser-
vices, and user details.

Input selection Selects all files in directory
/Windows/System32/config/ and all
files namedNTUSER.DAT

Input query //file[@name[starts-with(.,

"/Windows/System32/config/") ||

ends-with(., "NTUSER.DAT")]]

Tool name EXIF Extractor
Description Extracts metadata from images, e.g. a pic-

ture’s recording date and time and the type
of camera used.

Input selection Selects all files with mime-type ‘image’
Input query //file[mime[contains(.,"image")]]

Tool name Carving Tool
Description Uses header/footer signatures to locate im-

ages, URLs, zip-files, etc. in unallocated
space.

Input selection Selects any region node that has not been
annotated by another tool

Input query //*[not(container)]

Table 1: Input Descriptor examples
SYSTEM distinguishes two types of tools: extraction

tools and BLOB-extending tools. Extraction tools read
data from a region, interpret it, and produce XML that
says something about (parts of) that region. This type of
tool is suitable for extracting modest amounts of informa-
tion from regions. A good example of such a tool is a log
parser. All tools listed in Table 1 are extraction tools.

BLOB-extending tools produce not only XML but also
raw binary data. This new data is logically appended to
the BLOB from which the tool reads its input data. An

3

�������
�������

�����	�

���

����
����
����

���

����
����
����

������ ������ ������

���

����
����
����

������ ������ ������

������ �
��

�
��

�
��

���
����
��������

����� ����������

�����������

�
��������������

���
���������

��������������

�
��

Figure 2: Feature Extraction Example

example of a BLOB-extending tool is a tool that decom-
presses compressed files. Such a tool would logically ap-
pend the uncompressed data to a BLOB. In reality, SYS-
TEM does not physically extend BLOBs; the details of
SYSTEM’svirtual BLOB mechanism are described in the
next subsection.

The XML output generated by tools is almost com-
pletely free-format: there is no predefined output schema.
To obtain an integrated view across the output of differ-
ent tools, however, it is important that tools adhere to
some conventions. All SYSTEM tools that extract times-
tamped information, for example, produce the same XML
tag (timestamp) to mark the timestamp. This allows us
to obtain a timeline that includes information from multi-
ple tools. Similarly, all file-system parsers use a common
set of tags in their XML output.

In their XML output, tools can incorporateregion
nodes. A region node is an XML fragment that refers to
a segment of the input BLOB: a region. A region can de-
note various entities: a file, a sentence, an e-mail message,
or even an entire disk; a tool is free to specify any region
it can identify. The following region nodes match the ex-
ample given in Figure 2. Notice how they identify BLOB
regions using the XML attributesstart andend .

<case id="test-case" date="01-02-2006">
<image id="1" name="A" start="0" end="15000000"/>
<image id="2" name="B" start="15000000" end="35000000"/>
<image id="3" name="C" start="35000000" end="40000000"/>

</case>

<case id="test-case" date="01-02-2006">
<image id="1" name="A" start="0" end="15000000">

<volume type="FAT32" start="0" end="10000000"/>
<volume type="NTFS" start="10000000" end="15000000"/>

</image>
<image id="2" name="B" start="15000000" end="35000000"/>
<image id="3" name="C" start="35000000" end="40000000">

<volume type="EXT2" start="35000000" end="40000000"/>

</image>
</case>

Region nodes produced by one tool can be selected by
the input descriptors of other tools. This way SYSTEM
maintains the relationship between annotations and their
origin.

3.3 The Storage Subsystem

SYSTEM’s storage subsystem stores and gives access to
BLOBs and to the XML tree that annotates those BLOBs.

BLOBs are managed by SYSTEM’s BLOB manager,
which gives access to both the original BLOB input data
(usually disk images) and to the logical BLOB exten-
sions produced by tools. A BLOB extension involves a
data transformation (e.g., decompression). Any necessary
transformation information is provided by the tool that ex-
tends the BLOB. Instead of physically extending a BLOB
with new data, the virtual BLOB manager stores this
transformation and the input and output address ranges
involved in the transformation.

Both tools and queries require BLOB access. To pro-
vide a transparent interface to these clients, avirtual
BLOB serverhas been created which can be asked to
retrieve any region from a logical BLOB. Such a re-
quest essentially consists of a BLOB identifier, a start
offset, and an end offset (see Figure 3). The virtual
BLOB server forwards such requests to the BLOB man-
ager which will dynamically apply any transformations
necessary to (re)produce the data that has been requested.

This BLOB storage strategy —storing transformations
rather than data— allows us to keep storage requirements
under control. If necessary, the virtual BLOB server can
be extended with a cache, but at present no data is cached.

4

��� �����	��

� ����
	�����������

�
	
���� ���

	���
� �
��

�
	
�� � ����������� �
���� �! ��"	"
��!

� ��� �
#����
� �
�
�!��
	
��

�
�!	���	��#$� � ���%

�
���
� ��&������ �' �! ��"	"
��!

"�! ����"�!
	�(�)�)
� ��"���� * +-, .�/	0�1 23 /	4�5 6	0�1 07 +�+�5

"�
�)(� ��"�!
	���)�)

���� "����8 9 :

; <
= > ? @ A
8 : < B
A

��
�� � ���(�������
�
#�����CD
���� "����

�E��! F	�E �� � #
�
�	! ! ���������
� �

GH�)��I�J�
� �
K LNM
OEL-P

Q �	�

� ��� �
���)
K RHSTM�P

Figure 4: SYSTEM Tool Wrapping

for $i in doc("case.xml")//url
where contains($i,"google")
return $i

Figure 5: XQuery: returning all ‘Google’ URL’s found by
SYSTEM

The XML annotations are stored in MonetDB [2], a
high-performance database system that provides several
frontends, including an XQuery frontend. All queries in
our system are issued to this database system and are ex-
pressed in an extended version of the XQuery [1] query
language. XQuery is an expressive, general-purpose
query language in which XML data can be selected,
sorted, grouped, and joined. Figures 5 and 6 show two
example queries.

To integrate the XML with the BLOB-data, we defined
a additional XQuery functions that link XML elements
(region nodes) to the corresponding data in a BLOB.
These functions allow us to include BLOB data in query
results. Since most of the BLOB access complexity re-
sides in the BLOB manager, the implementation of these
functions was relatively straightforward.

A more involved XQuery extension is used to relate re-
gions based on their BLOB positions. There are cases
in which multiple tools extract data from the same ob-
jects. A URL scanner and an e-mail analyzer, for ex-
ample, could both annotate the same files, but would ex-
tract different features from it. In previous work[citation
omitted], we definedstand-offextensions through which
relationships between overlapping BLOB regions can be
expressed. With these extensions, one can, for example,
find an e-mail that contains a particular URL, even though

let $d := doc("case.xml")
let $f := $d//folder[@name="My Documents"]
let $r := for $i in $f//file

where $i/mime="application/x-zip"
order by

$i/accessed/date descending
return element "zipfile" {

$i/@name
}

return subsequence($r, 1, 20)

Figure 6: XQuery: return the names of the 20 last ac-
cessed ZIP files located in any ”My Documents” folder or
subdirs thereof

for $i in doc("case.xml")//file
where ends-with($i/@name,"INDEX.DAT")
return element "file" {

attribute { "name" } { $i/@name },
$i/select-narrow::url

}

Figure 7: XQuery: return all URL’s in IE history files
(INDEX.DAT)

these entities were discovered by unrelated tools. Figure 7
illustrates one of these extensions, theselect-narrow
operator. It selects only those regions that are contained
(by BLOB position) in the context region; in this case
it selects URL’s inside the INDEX.DAT-files. While we
consider the stand-off extensions useful, most of our cur-
rent queries do not involve these extensions.

3.4 Implementation

Much of our feature extraction framework code consists
of Python and Bash shell scripts. The tool collection
consists of existing forensic tools (both publicly available
tools and tools that we developed in-house. The current
collection includes a volume analysis tool, parsers for var-
ious file systems (FAT, NTFS, etc.), parsers for various log
files (e.g., Windows event log), a file-hashing tool, a link
file analyzer, a file carver, and more. Where necessary,
these tools were wrapped using scripts. As mentioned,
we use MonetDB and an extended version of XQuery for
XML storage and access. The BLOB manager and the
virtual BLOB server are Python programs.

5

Figure 3: Virtual BLOB Example

Users access SYSTEM applications through a simple
web interface. The result of an XQuery can be XML data,
which, in turn can be displayed and formatted in a browser
using XSL stylesheets. This is an easy way to quickly
create a front-end.

4 Forensic Applications

Using SYSTEM, we have implemented a number of small
but useful forensic applications. These applications have
been tested on several cases; the size of the disk images
in these cases ranged from 40 to 240 gigabytes.

The applications cover a range of functions —
browsing, searching, knowledge bases— and illustrate the
versatility of our query-based approach. Forensic investi-
gators, however, need not be familiar with the XQuery
language; they access the SYSTEM applications through
simple web interfaces.

4.1 Timeline Browser

Browsing remains one of the principal ways in which
forensic examiners discover information. The main type
of browsing that is supported by mainstream forensic
tools such as EnCase and FTK is file-system browsing.
While this is one useful perspective, other perspectives are
often equally important and can help reduce the amount of
data under investigation. Examples of such perspectives
include time and users.

Using SYSTEM, we have implemented a simple time-
line browser. Through a web interface, a forensic exam-
iner can select a date/time range of interest. The start and
end times are then plugged into the following parameter-
ized XQuery template:

let $d := doc("case.xml")
let $all :=

for $i in $d//%item%/date[
@unixtime <= %dateupper% and
@unixtime >= %datelower%]

order by $i/@unixtime cast as xs:integer
return $i

let $current :=
subsequence($all , %start%, %size%)

for $i in $current
return element "event" {

$i,
element "name" { name($i/parent::*) },
element "subject" {

name($i/parent::*/parent::*)
},
element "description" {

$i/parent::*/parent::*/(text|message)
},
element "file" {

for $j in $i/ancestor::file
return element "file" { $j/@* }

}
}

The resulting query selectsall XML fragments that
contain a timestamp. Where a tool such as EnCase
can display a time-ordered view of file-system metadata,
SYSTEM shows all timestamped information extracted
from the input BLOBs bydifferent tools. This includes
not only file-system metadata, but also entries from chat
logs, EXIF information from digital pictures, etc. This
way, an investigator obtains an integrated view of the in-
formation produced by various extraction and analysis
tools. She could see, for example, that movie files are
created in the file system at approximately the same time
that suspects are discussing such a transfer using a chat
program. The results displayed by the timeline browser
also include links to thederivation historyof result ob-
jects. By clicking on such a link, the investigator would
learn that a chat log entry was extracted from a file (by a
chat log parser) that was extracted from a zip archive (by

6

a zip parser), which was discovered in an NTFS file sys-
tem (by an NTFS parser) that was found in a disk image
(by a volume analyzer).

4.2 Photo Search

The photo search application finds digital images that sat-
isfy certain conditions. Figure 8 shows the query form
that is presented to users. An investigator can select the
camera model that was used to record the image, the date/-
time on which the recording took place, the resolution of
the image, etc.

For brevity, we omit the underlyingquery template.
The query constructed from that template combines file-
system metadata and EXIF information extracted from
digital images. The query produces XML region nodes
and some additional metadata. The query result includes
image previews which are generated by requesting the rel-
evant regions from the virtual BLOB server.

4.3 Child Pornography Detection

SYSTEM can be used to match case information against
existingknowledge bases. We define aknowledge base
as structured, relatively static information about a certain
subject. A typical forensic example of a knowledge base
is a database of hash values of files that have been de-
termined to contain child pornography (digital images or
movies). Our child pornography detection program uses
SYSTEM to match files present in a case against a hash
database that was compiled by the[nationality omitted]
police. (Other countries have similar databases.) The hash
database has been converted to XML and is preloaded into
SYSTEM’s XML database. During the feature extraction
phase, SYSTEM computes MD5 hash values of all files
discovered by file-system tools and other tools. Like all
features discovered by feature-extraction tools, these hash
values are also stored in the XML database. By press-
ing a single button, an investigator can execute a query
that matches these hash values against values present in
the hash database. This results in an overview of known
child-pornographic material that is present in the case
data.

This application matches all objects that have been
marked as as a ’file’ against the database. This also
includes ’files’ discovered by our carving tool, which

Figure 8: SYSTEM Photo Query

searches for known headers and footers in the unallo-
cated space of a file system. As a result, and in contrast
with similar functions in mainstream tools, the application
therefore also discovers child-pornography in unallocated
clusters. Moreover, this requires no changes to the query
that is used to execute the database match.

5 Discussion

Although it is too early for a formal evaluation of the suit-
ability of SYSTEM in forensic analysis, our early expe-
riences so far have confirmed the intuition that motivated
this research, but already highlight a number of issues to
be addressed in the next iteration of system design and
experimentation.

5.1 Flexible and Powerful Querying

Examples of questions that pop-up in forensic investiga-
tion include straight-forward ones like ‘When was file X
last modified?’, but also high-level information needs of
prosecutor or attorney, such as ‘Does this computer con-
tain (traces of) child pornography (CP)?’.

A strong point in our approach is that the SYSTEM ar-
chitecture offers the opportunity to express the questions
popping up in the forensic investigation process as queries
in the general-purpose XQuery language. So, the forensic
analysis is not limited to a set of predefined investigation
patterns. To illustrate the flexibility of this approach, con-
sider a collection of tools for the analysis of file-system
information, the computation of MD5 digests, the analy-
sis of log files, carving, and the extraction of EXIF meta-
data from images.

7

Assuming that we have represented the CP hash-sets in
an XML document calledCP-hashset.xml , the high-
level example question for the existence of CP could then
be formulated as a query that checks for existence of files
with an MD5 check-sum that exists in the CP database:

for $i in doc("case.xml")//file
where some $j in doc("CP-hashset.xml")//md5

satisfies data($i/md5) = data($j)
return $i

Additional queries may extend this collection based on
the occurrence of words or URLs that are frequently en-
countered in CP cases. The resulting set of matching files
will be used in follow-up queries, for example to provide
a list of .exe files not identified by the hash database for
additional investigation.

In other words, the declarative nature of the query lan-
guage enables new ways of processing the data, on-the-
fly, as needed for the specific case at hand. By param-
eterizing the previous CP query by the case’s filename
(case.xml in the example), the same pattern can be
reused for different investigations —independent of how
the files in the case have been extracted!Keeping these
queries for later reuse provides a way to capture knowl-
edge of the investigation process in SYSTEM. Essentially,
this process extends the set of tools defined in the fea-
ture extraction manager with new means to analyse case
data. At the moment of writing, the SYSTEM proto-
type provides already the query patterns to produce time-
lines, to identify traces of CP (an extension of the query
given above), to search photos, and the templates for re-
occurring browsing strategies and the collection of sum-
mary statistics.

Structural queries are surprisingly useful, even when
combining only two tools. For example, after a
filesystem-tool and an exif-tool have been applied to the
data, the investigator can already create a timeline to dis-
play file-activity together with events such as a photo be-
ing taken. Or, select files created (or deleted) within two
days from a photo being shot. Without SYSTEM, answer-
ing such questions always resulted in the need to write a
custom script, a time-consuming and error-prone process.

Currently, the query facilities are limited to structural
constraints, and very limited keyword matching. Given
the activity in defining the XQuery-Fulltext standard how-
ever, we expect that this shortcoming can be overcome

in the near future. Specifically, the XQuery engine used
in our current implementation has announced extensions
that provide basic information retrieval functionality.

5.2 Wrapping Tools

A few aspects contribute to the ’wrap-ability’ of tools:

• possibility to capture/represent the tool’s output;

• possibility to provide tool with correct input;

• amount of overhead introduced;

• the types of tools that can be wrapped (programming
interface);

• the amount of time it takes to wrap a tool;

• the behaviour of the system in case the tool produces
bad results.

The data model using XML to represent stand-off anno-
tations of a (virtual) BLOB seems to provide a good way
to overcome many of the problems with treating binary
data inside XML files. Due to the uniform output format
of tools, there is no real need to conform to a certain pro-
gramming interface. As long as a tool accepts BLOB data
and/or XML as input, and returns XML (and, if needed,
additional binary data) as output, the tool can be easily
wrapped, given that the tool does have an interface beyond
its GUI. SYSTEM itself currently providesC, Python ,
and commandline (bash /cygwin) interfaces.

Our approach to feeding the tool the correct input is
the use ofInput Descriptors. Although the results will be
based on previous tools (which possibly produced wrong
results), the missed objects and the false-positive rate
seems to be rather low. We do acknowledge that more re-
search should be performed in this area. In particular, we
think that knowledge-bases could contribute significantly
to improving the quality of the tool input.

The amount of time it takes to wrap a tool depends on
its output format. If the tool is already able to produce
output in XML format, wrapping could be a matter of
minutes, but when the output format of the tool needs to
be completely rewritten to become XML, or maybe even
the output has to be split into BLOB and XML, wrapping
might become more difficult. On the positive side, more
and more tools already produce XML as output.

8

SYSTEM runs its tools in separate processes, thereby
avoiding to crash itself whenever a tool crashes. The over-
head that this entails is worthwhile. We don’t need to fo-
cus on the quality of individual tools, and can concentrate
on the stability of the feature extraction framework itself.

5.3 Performance Aspects

An important aspect of forensic tools is the need to
query cases in interactive time. SYSTEM’s runtime per-
formance depends on the size of the resulting XML-
document, and the efficiency of the database backend.

5.3.1 Size of XML

In a case for demonstration purposes (2x120GB hd), the
extraction framework created a 130MB XML document
containing 2.2 million XML elements of which 86,000
file-objects (filesytem objects and carved files). Other an-
notations included over 460,000 identified date-objects.
We expect that the feature extraction framework will be
able to extract many more features as new tools are added.
Many of the new tools, however, will be file-specific, so
the XML document should only grow slowly from this
point. Notice that the observed ratio of 240GB to 130MB
gives a compression factor of roughly 1000.

Additional experiments have to point out if the current
performance figures will scale up when handling up to
10TB of binary data, which is our current target to better
represent the real-life forensic investigation.

5.3.2 Extraction Time

The amount of overhead introduced by the extraction
phase of SYSTEM is currently rather high: about 3 min-
utes per tool invocation (depending on the size of the
XML in the database). The overhead can be attributed
to two major cost factors.

A significant cost results from using an XQuery
database system that does not (yet) support updates. Con-
sequently, each tool updates the XML document by merg-
ing in its modifications, incurring the cost of copying and
parsing all this data (at every tool invocation). Also, this
processing strategy allows only to run tools sequentially.
As the database backend has recently been extended with
update functionality, we expect to reduce this cost factor

significantly: by avoiding the repeated parsing and ma-
terialisation costs, as well as allowing multiple (indepen-
dent) tools to run in parallel.

Another contributing factor is that we execute tools in
separate processes. This design decision has been taken to
shield the extraction manager from failing tools, in prac-
tice outweighting the performance penalty incurred.

The following timings are indicative for typical extrac-
tion operations.

• Parsing the file systems of a reasonably used and
modern computer containing several volumes and a
total of about 80,000 files takes approximately five
minutes.

• Hashing the content of all files discovered on such a
system takes several hours.

• Extracting EXIF information from several thousand
JPEG images takes several hours, mainly because of
high BLOB server overhead.

• Parsing Windows event log files takes a few seconds.
• Marking files in unallocated space based on header

and footer information takes several hours, mainly
because this work is carried out by a relatively slow
Python script.

5.3.3 Query Processing

To give an indication of SYSTEM’s query performance,
we provide indicative timings of the applications dis-
cussed in Section 4. The timeline browser selects and
sorts 500,000+ date objects on the fly in less than five
seconds. Likewise, the CP detection programs requires
less than five seconds to matching over a 100,000 case
file hashes against more than 100,000 database hashes.
The chosen database system performs very well at ’join’-
queries like the join of two hash-sets. The photo search
application requires approximately three seconds to find
1000 images with EXIF information; further selections
on a subset of these images are instantaneous.

Except for the database schema itself, there have not
been any optimizations in terms of additional indices, and
query-caching. Nor have we made an attempt to define a
number of views on the data, like a timeline view. An-
other possibility is to add a middle-tier that could lower
the pressure on the database server.

The main bottleneck in the architecture of SYSTEM
is the lack of caching, both during feature extraction and

9

querying: neither ‘simple’ queries for looking up a single
node (as used in browsing scenarios), nor requests to the
Virtual BLOB server are being cached in the current im-
plementation. Each time (a part of) a file in a file system
is requested, its path is looked up in a database, which in
turn is converted to a file-object, which is then read.

When rendering large query results, XSLT processing
can become the bottleneck, but this can be avoided by dis-
allowing certain queries, and showing only the top-K re-
sults for each query.

6 Conclusion and Future Work

This paper has given an overview of the SYSTEM frame-
work. While it is too early to draw definitive conclusions,
we feel that the following key benefits of our approach
have already surfaced:

• The separation of feature extraction and analysis
brings benefits to both phases. SYSTEM extracts
features automatically, which is essential when pro-
cessing large input sets.

• The use of XML as a common, intermediate out-
put format for tools allows us to integrate the out-
put of diverse, independent tools that produce simi-
lar information. This allows us to deal both with the
heterogeneity present in the input data (e.g., differ-
ent browser types) and with the diversity of forensic
analysis tools. These benefits are demonstrated quite
clearly both by our timeline browser and by our child
pornography detection program.

• By storing extracted features in an XML database
system, we can analyze those features using a single,
general-purpose, powerful query language. In ad-
dition, we benefit automatically from advances that
are made in the area of XML database systems (new
query features, improved indexing strategies, etc.)

Our early results with SYSTEM are encouraging, but
it is important to realize that the SYSTEM prototype is
just that: a prototype. Our experiences indicate clearly
that significant additional work is needed to turn SYS-
TEM into a production system for forensic analysis.

First, we are continuously expanding our tool set.
An increasing number of forensic tools produce XML
output and this is of obvious benefit to SYSTEM.

We are presently looking into integrating the output of
TULP2G [8], an open-source mobile phone analysis tool,
into SYSTEM. In a large-scale investigations, many mo-
bile phones can be seized. If information extracted from
those phones is converted to a uniform XML format,
then SYSTEM can be used to issue queries that span all
phones. In addition, information extracted from mobile
phones can be matched against information from other
sources, including disk images.

Second, we are looking into augmenting SYSTEM
with knowledge bases that contain expert knowledge
about specific types of digital traces. Good examples are
the locations of important Windows registry keys, the lo-
cations of useful log files and characteristic file-header in-
formation. Such knowledge can be captured either in the
form of static XML subdatabases or in the form of a query
database.

Third, we are working on adding full-text indexing to
SYSTEM and the corresponding query functions. The
current prototype implementations supports only struc-
tural XML queries. Adding full-text indexing will enable
content-and-structure (CAS) queries which will obviously
increase SYSTEM’s query capabilities.

References
[1] S. Boag, D. Chamberlin, M.F. Fernndez, D. Florescu, J. Ro-

bie, and J. Siṁeon. XQuery Specification 1.0.

[2] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rit-
tinger, and J. Teubner. MonetDB/XQuery: A Fast XQuery
Processor Powered by a Relational Engine. InProc. ACM
SIGMOD Conference, June 2006.

[3] F. Buchholz and E.H. Spafford. On the role of file system
metadata in digital forensics.Digital Investigation, 1:298–
309, 2004.

[4] B. Carrier and E.H. Spafford. Getting physical with the dig-
ital investigation process.International Journal of Digital
Evidence, 2(2), 2003.

[5] G. Mohay, A. Anderson, B. Collie, O. De Vel, and R. McK-
emmish.Computer and Intrusion Forensics. Artech House,
2003.

[6] A. Sheldon. The future of forensic computing.Digital In-
vestigation, 2:31–35, 2005.

[7] H.S. Thompson and D. McKelvie. Hyperlink semantics for
standoff markup of read-only documents. InProceedings of
SGML Europe ’97, Barcelona, Spain, May 1997.

[8] J. van den Bos and R. van der Knijff. TULP2G - An Open
Source Forensic Software Framework for Acquiring and
Decoding Data Stored in Electronic Devices.International
Journal of Digital Evidence, 4(2), 2005.

10

